RTORPA Example
[1]:
import generation_models as gt
from tyba_client.client import Client
import numpy as np
import pandas as pd
import os
[2]:
client = Client(personal_access_token=os.environ["TYBA_PAT"])
[3]:
model = gt.StandaloneStorageModel(
energy_prices=gt.DARTPrices(
dam=np.random.random(48).tolist(),
rtm=np.random.random(48).tolist(),
rtorpa=np.random.random(48).tolist(),
),
project_term=48,
project_term_units="hours",
storage_inputs=gt.MultiStorageInputs(
batteries=[
gt.BatteryParams(
power_capacity=1000.0,
energy_capacity=1000.0 * 2,
charge_efficiency=0.95,
discharge_efficiency=0.95,
degradation_rate=0.0,
)
],
),
)
[4]:
resp = client.schedule(model)
resp.raise_for_status()
res = client.wait_on_result(resp.json()["id"])
df = pd.DataFrame(res)
[5]:
# two new columns
df[["rtorpa", "soe_mean"]]
[5]:
| rtorpa | soe_mean | |
|---|---|---|
| 0 | 0.459418 | 475.000000 |
| 1 | 0.698615 | 1000.000000 |
| 2 | 0.814061 | 1525.000000 |
| 3 | 0.426796 | 2000.000000 |
| 4 | 0.660763 | 1473.684211 |
| 5 | 0.426009 | 736.184211 |
| 6 | 0.733494 | 1000.000000 |
| 7 | 0.991707 | 1737.500000 |
| 8 | 0.816683 | 1576.315789 |
| 9 | 0.040184 | 626.315789 |
| 10 | 0.862928 | 575.000000 |
| 11 | 0.967568 | 1525.000000 |
| 12 | 0.528905 | 1968.534483 |
| 13 | 0.320486 | 1410.753176 |
| 14 | 0.179744 | 756.034483 |
| 15 | 0.506928 | 1102.631579 |
| 16 | 0.184159 | 1051.315789 |
| 17 | 0.758873 | 1000.000000 |
| 18 | 0.773333 | 1737.500000 |
| 19 | 0.427789 | 1473.684211 |
| 20 | 0.568534 | 473.684211 |
| 21 | 0.038720 | 50.000000 |
| 22 | 0.406480 | 575.000000 |
| 23 | 0.467345 | 1525.000000 |
| 24 | 0.176373 | 1525.000000 |
| 25 | 0.489898 | 1525.000000 |
| 26 | 0.294734 | 2000.000000 |
| 27 | 0.096778 | 1473.684211 |
| 28 | 0.047591 | 473.684211 |
| 29 | 0.199256 | 475.000000 |
| 30 | 0.028051 | 1263.815789 |
| 31 | 0.402718 | 1051.315789 |
| 32 | 0.273838 | 1000.000000 |
| 33 | 0.517905 | 1737.500000 |
| 34 | 0.550950 | 2000.000000 |
| 35 | 0.059592 | 2000.000000 |
| 36 | 0.037408 | 1473.684211 |
| 37 | 0.083896 | 1422.368421 |
| 38 | 0.208502 | 1374.977314 |
| 39 | 0.552403 | 688.793103 |
| 40 | 0.530890 | 1000.000000 |
| 41 | 0.328186 | 1051.315789 |
| 42 | 0.720418 | 1102.631579 |
| 43 | 0.503628 | 1051.315789 |
| 44 | 0.096158 | 1000.000000 |
| 45 | 0.879919 | 1737.500000 |
| 46 | 0.244617 | 1473.684211 |
| 47 | 0.264351 | 473.684211 |
[ ]: